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Abstract. Technological advances in distributed cyber-physical systems
(CPS) will fundamentally alter the way present and future human societies
lead their lives. From a security or privacy perspective, a (multi-agent) cyber-
physical system is a network of sensors, actuators, and computation nodes,
i.e., a system with multiple attack surfaces and latent exploits that originate
both through software attacks and physical attacks. In this paper, we argue
that we are in pressing need to bring about a paradigm shift in software devel-
opment for multi-agent CPS. To this end, security and privacy policies should
be made a critical ingredient of agent interfaces with a goal of ensuring both
localized safety and privacy for each agent, as well as guaranteeing global
system safety and security. We present our vision on new theory, algorithms,
and tools to foster a culture of secure-by-design multi-agent CPS.

1 Introduction

Human societies of tomorrow will be immersed in multi-agent cyber-physical
systems (CPS). Examples include autonomous and semi-autonomous cars cou-
pled with intelligent transportation systems as well as fleets of unmanned aerial
vehicles (UAVs) performing mundane jobs like package delivery, and teams of
rescue robots in disaster management scenarios. A key feature of these systems
is that they consist of networked multi-agent cyber components that interact
with the physical environment. Informally, a CPS is a system that combines a
plant, i.e., a mechanical, electrical or hydraulic component that has temporal
behavior which follows the laws of physics, controlled by an embedded software
controller. A multi-agent CPS consists of two or more such CPSs with the ability
to communicate with each other or with a central agent. It is tempting to think
of a multi-agent CPS as just a larger CPS with several plants and controllers,
but what distinguishes a multi-agent CPS from an ordinary CPS is the decou-
pling between individual agents. Often, agents in such a multi-agent CPS are
autonomous, i.e., have some degree of freedom in controlling their behavior with-
out the intervention from an external agent, or are semi-autonomous, i.e., they
have the ability to switch control between a human operator and an embedded
software controller.

In the past few years, we have seen the catastrophic levels of damage that
attacks on cyber-physical systems can cause; examples include the blackout of



the Ukrainian power grid in 2015 [30], and the MIRAI botnet that made use of
Internet of Things (IoT) devices to launch Distributed Denial-of-Service attacks
[25]. Some types of cyber-induced attacks can have physical impacts; examples
include several examples where automobile security was compromised [11,26,37],
including a wireless hack on a Jeep vehicle in a controlled setting that received
attention in popular media [18]. In the domain of aerial vehicles, examples include
a GPS spoofing attack that allegedly led to the abduction of a US drone [38]. It
is clear that the need for security and trust in cyberspace is fast changing into
a need for secure and trustworthy cyber-physical spaces.

As a multi-agent CPS is a network of sensors, actuators, and computation
nodes linked through communication channels, from a security perspective, such
a system presents a plethora of attack surfaces. Direct attacks on such systems,
as well as latent vulnerabilities can attract both software as well as physical
attacks. Here, by software attacks we mean traditional cyber attacks that target
communication of a CPS agent with its external world by seeking to compromise
its availability, corrupt its data integrity, or lead to a loss of its data confiden-
tiality. By physical attacks, we mean an adversarial action that can either learn
the internal physical state of the system by observing its input/output behavior,
alter its internal physical state by injecting commands or control actions, or use
actual physical phenomena to induce unsafe behavior. Note that these categories
are not mutually exclusive, and often attacks can be constructed by exploiting
vulnerabilities in both the software and physical domains.

Our position is based on the premise that for a multi-agent CPS, there is a
pressing need to design a framework that supports a diverse collection of security
and privacy policies, but more importantly, supports reasoning about the impact
of such policies on the safety of each agent in isolation, and also on the safety,
security and privacy of agents at the level of the multi-agent CPS as a whole.
More specifically, we argue that to achieve a paradigm shift in CPS security, we
need to pursue the following objectives:

– The first step for systematic and formal reasoning about security or privacy is
to have a machine-checkable language/logic that can express complex policies
such as information flow in the context of CPS.

– This language/logic can then be used to monitor and enforce policies at
the level of individual agents through careful design and implementation
of sensor instrumentation at system level to gather the data required to
evaluate the policies.

– Monitoring and enforcement of policies also needs to be done in a composi-
tional fashion at the level of multiple agents in the CPS to reason about the
impact of such policies at the level of the entire system.

– Finally, the language and monitoring/enforcement mechanisms need to be
realized in real-world scenarios and systems with an eye on the next gener-
ation of CPSs that will play a crucial life in our daily lives.

We elaborate on our position on each of these objectives and our view on ad-
dressing them in Sections 2 – 4.
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Fig. 1. Depiction of an autonomous intersection manager system.

2 Logic-based Expression of Security and Privacy Policies
for CPS

Signal Temporal Logic (STL) is a machine-checkable logical formalism that
was first introduced in the context of specifying properties of mixed-signal cir-
cuits [31]. There has been considerable interest in the use of STL for specifying
industrial-scale embedded systems and an ecosystem of monitoring and test-
generation tools has evolved around the logic [2,3,13,15,20,21,24]. We envision
two extensions to STL to express security properties on confidentiality, integrity,
and availability as well as temporal constraints that counter side-channel attacks.

STL extension for security. Our first proposed extension is Security-Aware
Signal Temporal Logic (SA-STL), that introduces common security primitives
as first-class predicates in the logic. This will allow designers to express security
properties and constraints in a uniform, machine-checkable language. The key
advantage of using SA-STL is that it inherits quantitative semantics of STL,
which will allow us to quantify the degree of security of the system. SA-STL will
also include security constraints that are stochastic in nature by allowing prob-
abilistic predicates such as those allowed by Stochastic STL [29]. As this logic
can reason over real-valued signals, it allows seamless reasoning over physical
signals and quantities in a single logic. Consider for example the scenario shown
in Fig. 1, where the car shown wishes to cross the intersection from the lane
marked 1 to the one marked 8. The SA-STL formula (1) says that, “if the car
receives a message from the intersection manager granting permission to use the
intersection, then, the car has a window of time in the future, where subject to
the constraints imposed by the car’s dynamics, the car can cross the intersection
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in a same fashion.” We can express the following property in SA-STL as follows:

G

lane = 1 ∧
recvEncMsg = granted ∧
F[0,10]authSender = IntMgr

 =⇒ (accel<2 U[3,10] lane=8)

 (1)

We remark that this is just one aspect of the security policy that specifies the
timeliness of crossing and authenticity of the received message. We observe that
the above security policy can be expressed as a conjunction of separate parts
that monitor the transmission of the request signal, reception of the grant signal,
continuous monitoring of the physical signals corresponding to acceleration and
position in its control unit, and transmission of successful intersection navigation
once it reaches the desired lane.

Hyper logics. A large set of important information-flow security and privacy
policies are inexpressible in trace-based variants of temporal logics (such as SA-
STL). Although existing hyper logics such as HyperLTL [12] can express complex
information flow policies, they currently do not allow explicit timing constraints
and real-valued signals. Thus, we propose to design a new logic called Hyper-
MTL that will allow explicit quantification over traces as well as timed temporal
operators that enforce timing constraints across multiple traces. For example,
we envision a timed until operator that enforces a time interval for the even-
tuality part of the operator as well as an error bound which allows events to
happen within that bound but across multiple traces. For example, by formula
ϕ = ∀π.∀π′.aπU

j
I bπ′ , we mean that in every pair of traces, b should occur within

explicit time interval I, but occurrences of b in π and π′ can take place in a slid-
ing window such that occurrences are not j units apart. Thus, if I = [0,∞),
then the sliding window can move at any point along the time. This will allow
us to express protection policies against many side-channel timing attacks. This
logic can then be extended to have predicates over real-valued signals, similar
to STL, and we can formulate quantitative semantics to help obtain a notion of
robust satisfaction.

As each agent in a multi-agent CPS is effectively a hybrid dynamical sys-
tem with inputs and outputs, the above frameworks can employ recent research
results on attack-resilient control and attack detection to synthesize observers
that identify the conditions under which an agent is compromised. Thus, one can
investigate mapping observers synthesized in this fashion into a SA-STL-based
security or privacy policy expressed as a hyperproperty in the newly proposed
hyper logic.

3 Monitor Synthesis and Resource-aware Monitoring
Algorithms

Runtime monitoring is a technique commonly used for protecting a CPS against
uncertainties in its environment. Runtime monitoring enables (1) automatic
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identification of the minimal number of states or program variables to moni-
tor so as to make monitoring minimally intrusive, (2) the use of quantitative,
predictive monitoring that is resource-optimal and can prevent a security vio-
lation before it occurs, (3) the use of quantitative trust management [5, 42] to
dynamically monitor trust levels of agents in the multi-agent CPS, and use trust
as a mechanism to synthesize distributed observations through a multiplicity of
agents and sensors. Our view is to design multi-faceted algorithms to monitor
complex security and privacy policies in CPS on several fronts.

Robust and predictive monitoring. We advocate combining robust on-
line monitoring for STL [14] and predictive monitoring for Metric Temporal
Logic [16]. We believe that robust predictive monitoring can provide nuanced
information about probabilistic and quantitative information of future security
risks, allowing earlier preventive actions.

Robust monitoring of hyper logics. We envision algorithms for monitoring
timed hyperproperties with real-valued signals. These algorithms will expand on
previous efforts (e.g., [1,6,7,9,17]). Such a monitoring algorithm will take as in-
put either (1) concurrent output traces of an instrumented running system, (2)
offline logs of past executions, or (3) runtime traces and an abstract model of
the system [8] as well as a set of formulas. The algorithms will evaluate the for-
mulas and emit satisfaction/violation verdicts on the input online/offline traces.
In case of violation, these verdicts will be used to take action on maintaining
system safety or privacy. Following the recent trend, monitoring can be done on
a GPU [4] or FPGA [19] device to minimize the impact of probe effects on the
system under inspection and also achieve highly efficient resource management.

Sensor instrumentation. Sensor instrumentation for monitoring under ar-
chitectural constraints is inevitable to achieve effective CPS monitoring. One ap-
proach is to exploit logging schemes for monitoring of distributed controller net-
works; for a single control loop (i.e., feature), [33,34,40,41] introduce conditions
that the instrumentation points need to satisfy to ensure full system observabil-
ity with continuous monitoring, even in the presence of malicious components.
Similarly, when intermittent monitoring is used, extensions of the techniques
from [22, 23, 27, 28] can be utilized. This would effectively also allow for attack
detection and identification of compromised components.

4 Compositional Runtime Enforcement of CPS Security
Policies

Multi-agent CPS are inherently component-based. Thus, it is natural to think of
decompositional methods that partition the overall system security, privacy or
safety into assumptions and guarantees at the level of individual agents. There
are two key building blocks that give us dynamic assurance of meeting securi-
ty/privacy policies at run time: (1) each agent monitors the assumptions speci-
fied by the security/privacy policy of the system on the inputs it receives from
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other agents or the environment, (2) a runtime enforcement system uses various
techniques to enforce safe behavior of the CPS agent’s actuation system, and
to enforce the guarantees provided by the agent’s outward communication to
other agents. We discussed the first item in Sections 2 and 3. We now focus on
mechanisms for the second item.

Runtime enforcement. In some cases, if some of the system components
have been compromised, the remaining components can still be used for control
with (potential) performance degradation but strong safety guarantees [35, 36].
On the other hand, when some components are compromised, it is necessary
to rely on architectural support to ensure safe system operation in the case of
attacks [33, 35] through a set of actuators. However, without architectural sup-
port, even when these actuators are identified they can continue to force the sys-
tem into an unsafe state. This can be prevented with the use of secure/trusted
hardware and architectural design that allows for decoupling of the attacked
actuators. Similarly, if a compromised control module (e.g., a task running on
an ECU) is detected, rebooting the controller and restoring it to a safe cyber-
physical state could neutralize the attack; similarly, the system may decide to
switch to a trusted controller that is safe, but may not be optimized for perfor-
mance (e.g., as in the standard simplex architecture [32,39]). In situations where
some, but not all of the control components are compromised, an interesting
problem to investigate is the use of micro-rebooting for system recovery, which
has shown to significantly reduce recovery cost, such as time to recover [10].
To design successful techniques, it is critical to have clear understanding of the
underlying system architecture and how architectural support can be exploited
to provide safe system performance even in the presence of attacks. Thus, one
can clearly capture platform resources in the form of real-time, assume/guar-
antee properties of the sensor, controller and actuation modules. This will help
support compositional analysis from the perspective of evolving software with
runtime changes in the system configurations. In this context, a key aspect that
will provide dynamic assurance is a clear formulation of various recovery and
enforcement mechanisms at the level of individual agents as part of the agent’s
architecture. Another area to investigate is developing repair transducers for en-
forcing security policies. String transducers are automata that map input strings
to output strings, and have been studied in the context of string sanitization.

Compositional Design. The monitoring techniques for secure and privacy-
preserving CPS discussed in Section 3 will provide different resiliency guarantees
for specific attack vectors, including claims about what attacks are detectable,
identifiable, and can be attenuated through resilient control. A missing link is still
providing guarantees on time-to-detection and identification, as well as poten-
tial control-performance cost degradation due to their use. One way to develop
compositional design methods for combining different monitors is a hierarchical
monitoring system, in order to improve system resiliency to attacks over any
monitor individually. Intuitively, multiple deployed monitors can guard one an-
other’s blind spot or they can be activated at different time-instances due to the
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constrained system (e.g., computation) resources. There are multiple challenges
to tackle, e.g., modeling, types of assumptions and guarantees, implementation
and performance degradation costs, as well as attackers’ impact over time if
the security-aware module is not active. The use of logic-based modeling and
reasoning should also be investigated.

5 Conclusion

In this paper, we focused on the pressing need to bring about a paradigm shift
in software development for multi-agent CPS. We sketched our position on three
different orthogonal fronts to tackle the problem, namely, (1) designing specifi-
cation languages that can capture both security and CPS aspects of systems, (2)
runtime monitoring of CPS to detect security violations and detect attackers’
attempts to compromise security and/or privacy, and (3) runtime enforcement
to ensure security and safety of CPS. Our view is that security and privacy
policies should be made a critical ingredient of agent interfaces with a goal of
ensuring both localized safety and privacy for each agent, as well as guaranteeing
global system safety and security. This is especially crucial and challenging in
multi-agent CPS.
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